

COMPONENTS

Kurzübersicht / Besonderheiten vom Doppelthermostat-/ Setpointregler / PID-Regler ATR121

Eingänge

Thermoelemente K, S, R, J von -260°C bis 1760°C PT100/500/1000, NI100, PTC 1k, NTC 10k 0 - 10 V, 0-20 mA, 4-20 mA Potentiometer <6K Ω und <150K Ω

Istwertkorrektur/Abgleich

Werte können addiert oder multipliziert werden → z.B. um berechnete Werte anzuzeigen/aufzuzeichnen (Durchfluß, Längenausdehnung, Formeln etc.)

Ausgänge

1 x Wechsler, 1 x Schließer/Öffner, 1 x SSR

Regelung

Heizen, Kühlen, Alarm, Heizen und Kühlen, Ansteuerung Servoklappen inkl. Laufzeitvorgabe, P-, PI-, PID-Regelung bzw. Auto-Tuning (Optimierung)

Anzeige

3 bzw. 4 Digits + 3 LED's

Memory Card

Parameter und Schaltpunkte können schnell kopiert werden

Anwendungen

Für Temperatur, Druck, Feuchte, Heizen/Kühlen (3-Punkt, neutrale Zone) Füllstandsmessung, Längs-/Längenmessung → auch mit Korrekturfaktor (Werteaddition, Wertemutiplikation z.B. nicht linearer Verlauf) Und vielen weiteren Anwendungen

1 - BENUTZERINFORMATIONEN	4
2 - DISPLAYS UND FUNKTIONSTASTEN	4
3 - SCHALTPUNKTÄNDERUNG	5
4 - FUNKTIONSSTŐRUNGEN	5
5 - INFORMATIONEN FÜR INSTALLATEURE	6
6 - EINLEITUNG	6
7 - BESTELLUNGSANGABEN	6
8 - TECHNISCHE DATEN	7
9 - ANSCHLUSSBELEGUNGEN	8
10 - SCHALTPLAN ATR121 / ATR141	9
11 - BETRIEBSART DES ALARMAUSGANGS OUT2	12
12 - ÄNDERUNG DER KONFIGURATIONSPARAMETER	16
13 - KONFIGURATIONSPARAMETER	17
14 - TUNING	27
15 - MANUALLER START DES TUNINGS	27
16 - AUTOTUNING	28
17 - FUNKTION LATCH ON	28
18 - FUNKTION NEUTRALE ZONE	29
19 - SERIELLE KOMMUNIKATION	30
20 - MEMORY CARD (WAHLWEISE)	35
21 - SPEICHERUNG WERKEINSTELLUNGEN	36
22 - ÜBERWACHUNGSSYSTEM MIT ATR121 / 141	37
23 - KONFIGURATION	38
24 - ANMERKUNGEN	39

1 - BENUTZERINFORMATIONEN

2 - DISPLAYS UND FUNKTIONSTASTEN

Das Display zeigt normalerweise den Prozesswert (z.B. gemessene Temperatur) an, es kann aber auch den Schaltpunkt oder den Wert der einzufuehrenden Daten anzeigen

Leuchtetn wenn der Schaltpunkt angezeigt wird und mit Pfeiltasten veraendert werden kann AN wenn der Ausgang aktiv ist

3 - SCHALTPUNKTÄNDERUNG

Um den Schaltpunkt-Wert zu ändern, Taste ¹¹ oder eine der Pfeiltasten drücken. Led OUT1 leuchtet und nun ist es möglich den Schaltpunkt –Wert durch Drücken der Pfeiltasten zu verändern.

_	Taste	Display	Anwendung
1	oder oder	Display zeigt den Haupt- Schaltpunkt an. Led OUT1 leuchtet.	oder drücken um den Schaltpunkt zu ändern (schnelle Änderung möglich). Ca. 4 Sek. Nach der letzten Änderung, wird der aktuellen Prozesswert auf dem Display angezeigt.(Wert des Fühlereingangs).
2	SET	Display zeigt den Alarm- Schaltpunkt an. Led OUT2 leuchtet.	oder drücken, um den Schaltpunkt- Wert zu erhöhen oder herabzusetzen. Beim Loslassen der Tasten wird der aktuelle Wert automatisch gespeichert und der Prozesswert wird wieder angezeigt.

4 - FUNKTIONSSTŐRUNGEN

Bei Störungen an der Anlage schaltet der Regler auf den Regulierungseingang und zeigt Funktionsstörung an. So wird der Regler zum Beispiel die Beschädigung eines angeschlossenen Thermopaares anzeigen, indem auf dem Display die Anzeige E^{-5} blinkt

Weitere mögliche Anzeigen sind in der unten stehenden Tabelle wiedergegeben.

Anzeige	Ursache	Behebug
E-0 I	Programmierfehler EEPROM-Zelle	
E-02	Schaden am Sensor- Kaltschweißtemperatur oder Umbebungstemperatur ausserhalb des zugelassenen Bereichs	
E-04	Falsche Konfigurationsdaten. Möglicher Velust der Eichung des Instruments	Prüfen Sie ob die Konfigurationsparameter korrekt sind
E-05	Őffnes Thermopaar oder Temperatur außerhalb des zugelassenen Bereichs	Prüfen Sie die Verbindung mit den Sonden und deren Zustand.
E-08	Eichungsdaten nicht vorhanden	

5 - INFORMATIONEN FÜR INSTALLATEURE

6 - EINLEITUNG

Danke, dass Sie einen Pixsys Regler gewählt haben. Verschiedene Modelle mit 3-4 Digit Displays machen die Regler für eine Reihe von Anwendungen im Temperatur- Feuchte- undDruckbereich geeignet, sowie im Bereich linearer Potentiometer. Die Ausgangsoptionen beinhalten Relais und HL-Relais, aber die Einheit ist auch als Anzeige für Anwendungen, die keine Steuer- oder Alarmausgänge benötigen, konfigurierbar. Die PID-Regelung mit automatischer Tuningfunktion ermöglicht den Abgleich der Kontrollalgorithmen an die Anlage. Für Anwendungen mit linearen Potentiometern erlaubt die Funktion LATCH ON eine schnelle Kalibrierung. Eine Memory Karte ermöalicht die Konfigurationsparameter zu kopieren und zu speichern. Die folgenden Tabellen ermöglichen eine einfache Auswahl des benötigten Modells.

7 - BESTELLUNGSANGABEN

Bestellungsangaben ATR121					
ATR121-	хх	х			
Versorgung	AD		1224Vac ± 10% 50/60Hz		
			1235Vdc		
	А		24 Vac \pm 10% 50/60 Hz		
	В		230 Vac ± 10% 50/60 Hz		
	С		115 Vac ± 10% 50/60 Hz		
Serielle	А	Т	RS485 - Modbus RTU slave.		
Kommunika-tion	AD	Т	Relay Q2 nicht möglich bei diesem Modell		
			Alarm beim SSR-Ausgang.		
			Nur AT: 24Vac +/- 10% 50/60 Hz		
			Nur ADT: 1235Vdc		
Bestellungsang	aber	n AT	R141		
ATR141-	ΧХ	Х			
Versorgung	AD		1224Vac ± 10% 50/60Hz		
			1235Vdc		
	А		24 Vac \pm 10% 50/60 Hz		
	В		230 Vac ± 10% 50/60 Hz		
	С		115 Vac ± 10% 50/60 Hz		
Serielle	А	Т	RS485 -Modbus RTU Slave.		
Kommunika-tion	AD	Т	Relay Q2 nicht möglich bei diesem Modell,		
			Alarm beim SSR-Ausgang.		
			Nur AT: 24Vac +/- 10% 50/60 Hz		
			Nur ADT: 1235Vdc		

8 - TECHNISCHE DATEN

Hauptdaten					
	Displays	3 digits (0,56 inches) ATR121	3 digits (0,56 inches) ATR121		
		4 digits (0,40 inches) ATR141			
		+ 3 Leds (Out1, Out2, Fnc)			
Betriebstem	peratu	r 0-40°C - Feuchtigkeit 3595uR%			
Aba	lichtung	FrontplatteIP65 (mit Dichtung) / Box IP30 / Reihenklemmen IP20			
<i>I</i>	Materia	ABS UL94V2 selbstverlöschend			
(Gewich	t Ca. 100 gr.			
Hardware			-		
Analog-	AN1				
eingang	Konfig	jurierbar über Software	Toleranz 25°C		
	Thern	noelemente	0.5 % ± 1 digit für		
	Тур К	, S, R, J.	Thermoelemente		
	PT10), PT500, PT1000, Ni100, PTC1K,	und RTD		
	NTC1	0Κ (β 3435Κ)	Vergleichsstelle		
	0-10V	(Ri>= 110 KΩ)	0.2°c/°c der		
	0-20,	4-20mA (Ri <=4.7 Ω)	Umgebungstemperatur		
	Poten	tiometer ≤6KΩ, ≤150KΩ	$0.2\% \pm 1$ digit für V, mA		
Ausgänge	2 Rela	ays + HL-Relais			
	OUT1	:10A Widerstandsbelastung Versior	ו AD		
		8A Widerstandsbelastung			
	_	Versionen A, B, C			
	OUT2	: 5A Widerstandsbelastung			
SSR	8 Volt	20mA Version A/B/C			
HL-Relais 15 Vol		30mA Version AD (12Vac)			
	30 Vo	It 30mA Version AD (24Vac)			
Software					
Regelalgorithmen		AN/AUS mit Hysterese oder PID mi	t automatischem		
Datens	schutz	Konfigurationspasswort, schnelle Pr	rogrammierung		
		union memory Nane			

8.1 ABMESSUNGEN-INSTALLIERUNG

9 - ANSCHLUSSBELEGUNGEN

Obwohl der Regler entwickelt wurde, um auch den schwersten möglichen Störfaktoren in Industrieanlagen widerstehen zu können, beachten Sie bitte die folgenden Sicherheitshinweise.

- Halten Sie Stromversorgungskabel und Hochleistungsübertragungsleitungen auseinander
- Halten Sie das Gerät von Fernschaltern, elektromagnetischen Schaltschützen und starken Motoren fern
- Halten Sie das Gerät von Hochleistungsapparaten fern, vor

allem falls phasengesteuerten

10 - SCHALTPLAN ATR121 / ATR141

10.1 Niederspannungsversorgung 12/24 Vac-Vdc ATR121-AD , ATR141-AD

12...24Vac ± 10% 50/60Hz

12...35Vdc **Version "T" mit Schnittstelle NUR 12...35Vdc

10.2 Versorgung 24/115/230 Vac ATR121-A-B-C , ATR141-A-B-C

24Vac ± 10% 50/60Hz 230Vac ± 10% 50/60Hz 115Vac ± 10% 50/60Hz
230Vac ± 10% 50/60H 115Vac ± 10% 50/60H

10.3 AN1 Analoger Eingang

-Thermoelemente K, S, R;J; -Achten sie auf die richtige Polarität -Benutzen sie für Verlängerungen eine Ausgleichsleitung und Klemmen, die zum verwendeten Gerät passen

✓ <u>Nur Version AD</u>

-Zum optimalen Betrieb benutzen sie gegen Masse isolierte Sensoren -Andernfalls benutzen sie einzeln isolierte Umformer für jeden Controller

10.4 Beispiele Analoger Eingang

10.5 Relais Ausgänge

Q1 Kapazität 8A/250V~ (Versionen A-B-C)
Widerstandsbelastung (manoeuvre 2x10⁵min - 8A/250V~)
Q1 Kapazität 10A/250V~ (Version AD)
Widerstandsbelastung (manoeuvre 2x10⁵min -10A /250V~)
Q2 Kapazität 5A/250V~ Widerstandsbelastung

(manoeuvre 2x10⁵min a 3A /250V~)

10.6 HL-Relais Ausgang

Kapazität 12...24V/30mA Version AD Kapazität 8V/20mA Versionen A-B-C Befehls Ausgabe wenn als HL-Relais konfiguriert

10.7 Serielle Kommunikation Versionen ATR121-xT , ATR141-xT

RS485, MODBUS-RTU

Keine LT (line termination) Widerstände benutzen

11 - BETRIEBSART DES ALARMAUSGANGS OUT2

11.1 Absoluter Alarm oder Schaltpunktalarm (

11.2 Absoluter Alarm oder Schaltpunktalarm im Bezug auf Steuerung-Schaltpunkt (

11.3 Band Alarm (

11.4 Obere Abweichung Alarm (Auswahl

11.5 Untere Abweichung Alarm (Auswahl

12 - ÄNDERUNG DER KONFIGURATIONSPARAMETER

Das Konfigurationsmenü ist Passwort geschützt um vor unautorisierten Eingriffen auf die Einstellungen geschützt zu sein. Password kann nicht geändert werden.

	Taste	Display	Ausführung
1	thic	Nach 5 Sekunden zeigt das Display DDD, das erste Digit links leuchtet. DDDD beim ATR141	

2		Erhöht ersten Digit um "1".	drücken, um das folgende Digit zu erreichen und Konfigurationspasswort eingeben <u>"123" für ATR121</u> oder <u>"1234" für ATR141</u>
3	SEI	Display zeigt den ersten Konfigurationsparameter an LOU für ATR121 LOUL <u>für ATR141</u>	
4		Die Pfeiltasten ermöglichen die Bewegung in der Konfigurationstabelle vorwärts und rückwärts.	Zu ändernden Parameter auswählen, drücken um ihn anzuzeigen und mit den Pfeiltasten den Wert des Parameters ändern.

13 - KONFIGURATIONSPARAMETER

Ρ	Display	Beschreibung	Anzeige				
			ATR121	ATR141	Beschreibung		
1	ATR121	Auswahl der Art des	o i2		SteuerausgangQ1 Alarm Q2 (default)		
	c.ou	Steuerausgangs	5 م	o 155	SteuerausgangQ1 Alarm HL-Relais (SSR)		
	ATR141		55-	55-	Steuerausgang HL- Relais (SSR) Alarm Q1		
			o2. I	020 l	SteuerausgangQ2 Alarm Q1		

			56-	SEru.	Auf (Open) Q1 Zu (Close) Q2 (HL-R Version mit RS485)		
2	5En	Art des	Lc}-		TE Typ K -2601360 °C (default)		
		verbundenen Sensors	Lc.S	ری ال	TE Typ S -40…1760°C		
		auswählen	Lcr		TE Typ R -40…1760°C		
		\Lambda Nur AD	Lcui		TE Typ J -2001200°C		
		Version:	PL	PŁ	Pt100-200600°C		
		Zum optimalen Betrieb benutzen	PE I		Pt100-200140°C		
		Sie gegen Masse			Ni100 -60180°C		
		Sensoren.	ntc		Ntc 10KΩ		
		Andernfalls benutzen Sie	Andernfalls benutzen Sie einzeln isolierte	Andernfalls benutzen Sie einzeln isolierte	Ptc	Ptc	-40123 C Ptc 1KΩ -50150°C
		Spannungs-	PLS	PLS	Pt500-100600°C		
		versorgungen für jeden Regler			Pt1000 -100600°C		
					010V		
			020	0.20	020mA		
			420	420	420mA		
			Po I	Pot I	Potentiometer		
			Po2	Pot2	Potentiometer ≤150KΩ		

3	HP	Auswahl der			Keine Dezimalstelle (default)
	```	Anzahl der Dezimalstellen			1 Dezimalstelle
		Dezimaistenen			2 Dezimalstellen
					3 Dezimalstellen
					Grad für den
4		Untere Grenze	-199	-999	Temperatur-Sensor
		des	+999	+9999 digit	Digits für lineare
		Schaltpunktes	digit	_	Signale und
			-		Potentiometer
					(default 0)

5	Ηις	Obere Grenze des Schaltpunktes	-199 +999 digit	-999 +9999 digit	Grad für den Temperatur-Sensor Digits für lineare Signale und Potentiometer (default: 999 beim ATR121, 1750 beim ATR141)
6	Lan	Untere Grenze des analogen Eingangs Beispiel: beim Eingang 4-20mA: -0,5 bis 18 bar Eingabe: -0,5	-199 +999 digit	-999… +9999 digit	(default 0)
7	Ηια	Obere Grenze des analogen Eingangs Beispiel: beim Eingang 4-20mA: -0,5 bis 18 bar Eingabe: +18	-199 +999 digit	-999 +9999 digit	(default 999)
8	ATR121	Funktion Latch-On		FF	Gesperrt (default)
	LAF	(Automatisches setzen des	S	Ed	Standard
	ATR141	Limits für Potentiometer			Virtueller Nullpunkt gespeichert
	LHEC	und lineare Signale			Virtueller Nullpunkt am Start
9	ATR121	Offset Kalibrierung/ Istwertkorrektur Wert, der dem angezeigtem Prozess hinzuaddiert wird (normalerweise korrigiert er den Wert der Umgebungs-	-19.9 +99.9 Einheit	-99.9 +99.9 Einheit	Zehntel/Grad für Temperatur, Digits für lineare Signale und Potentiometer (default 0.0)

10	ATR121	Istwertkorrektur Wert, der mit der angezeigten Zahl multipliziert wird, um den Istwert des Prozesses zu erhalten	-19.9% +99.9%	-99.9% +99.9%	(default 0.0)
11	rEG	Regelung	HEA	HEAF	Heizen (normal geöffnet (default)
				cool	Kühlen (normal geschlossen)
			ſŗ.	ſŗ.	Absoluter Alarm mit manueller Entrieggelung des Alarms
					Absoluter Alarm mit manueller Entrieggelung des Alarms; Zustand des Relais beim Ausschalten gespeichert
			Ho	Hao	Warm Regelung, PID auf 0 gestellt wenn Istwert ober Schaltpunkt ist
12	Sc.c.	Stellung des Kontaktes im Falle eines		1.	Offener Kontakt gesichert (default)
		Fehler		n. mð	Geschlossener Kontakt gesichert
13	ATR121	Stand des LED OUT1	C.C	1.	AN mit offenem Kontakt
	ATR141	entsprechend dem relevanten Kontakt		ະ ະ	AN mit geschlossenem Kontakt (default)

r		0.1/0.FF			
14	ATR121	ON/OFF Hysterese oder Totzone für P.I.D. Steuerung	-199 +999 digits	-999… +999 digits	Zehntel/Grad für Temperatur, Digits für lineare Signale und Potentiometer (default 0.0)
15	Pb.	Proportionalberei ch, Breite des Prozesses in Einheiten (z.B. bei Temperatur in Grad)	0999	09999	0 = ON/OFF °C (Temp.) Digit (V/mA) (default 0)
16	L . L	Integrale Zeit Trägheit des Prozesses in Sekunden	0-999	0-9999	Sekunden (Bei 0 deaktiviert) (default 0)
17	Ł.d.	Abgeleitete Zeit für P.I.D. Normalerweise ¼ der integralen Zeit	0999	09999	Sekunden (Bei 0 deaktiviert) (default 0)
18	۲.	Zeit des Zykluses für Zeit- Proportionale Ausgabe (normalerweise über 10s für Kontakte, 1s für HL-Relais Wert deklariert vom Hersteller für Servoklappen)	1-	300	Sekunden Bei 0 wird die Zeit des Zykluses 100ms (default 10)
19	AL.	Einstellung des Alarms. Der Schaltpunkt für	R A	ALA	Absolut- Prozessgebunden /Schaltpunktalarm (default)
		den Alarm ist SET2.	Rb		Band
			HdS		Obere Abweichung

				RL.d.	Untere Abweichung
			RRS	ALAS	Absolut gebunden an Schaltpunkt 1.
				cool	Steuerausgang fűr Kühlen-Regelung beim PID Heizen- Kühlen ¹
			ſŗ.	[-- .	Absolut – mit manueller Entrieggelung (nach Alarm-Eingriff die Taste FNC drucken, um Ausgang zu entrieggeln)
					Absolut – mit manueller Entrieggelung (nach Alarm-Eingriff die Taste FNC drucken, um Ausgang zu entrieggeln) Zustand des Relais beim Ausschalten gespeichert
20		Kontakt für den Alarmausgang			Normalerweise offen, beim Start aktiv (default)
	und Art der Reaktion		E.S	Normalerweise geschlossen, beim Start aktiv	
			ſŢŲ		Start aktiv Normalerweise offen, beim Eingang des Alarms aktiv ¹

¹ Parameter 33,34,35,36 nur für Warm-Kalt PID Regelung (HL. als COO) und Wert vom Anders als 0.

¹ Beim Einschalten des Reglers ist der Ausgang abgeschaltet wenn irgendwelcher Alarm aktiv ist. Nach Alarmabschaltung, wird der Ausgang aktiviert

					Normalerweise geschlossen, beim Eingang des Alams aktiv ¹
21	Sc.A	Kontakt für den Alarmausgang		1.	Offener Kontakt gesichert (default)
		im Fehlerfall			Geschlossener Kontakt gesichert
22	ATR121	Definiert den Status der LED OUT2 in	C.C	1.	Bei offenem Kontakt eingeschaltet
		Verbindung mit dem entsprechendem Kontakt		n. ⊪®	Bei geschlossenem Kontakt eingeschaltet (default)
23	ATR121	Hysterese der Alarme	-199 +999 digits	-999… +9999 digits	Zehntel/Grad für Temperatur, Digits für lineare Signale und Potentiometer (default 0.0)
24	ATR121 ATR141	Alarm Verzögerung	-180.	+180	Sekunden Negativ: Verzögerung bei Alarmabschaltung Positiv: Verzögerung bei Alarmeinschaltung (default 0)
25		Schaltpunkt- Absicherung	Fre	Free	Freier Zugriff auf alle Schaltpunkte (default)
			Pr.5	Pras	Schaltpunkt SPV1gesichert
			PrA	ProA	Alarm-Schaltpunkt SPV2 gesichert
				ALL	Zugriff auf alle Schaltpunkte verweigert

26	ATR121	Software Filter	1.	-15	Anzahl der Mittelwerte (Sampling Frequenz 15Hz)
27	ATR121	Auswahl der Art	oFF	oFF	(default 10) Abgeschaltet (default)
	ATR141	des AutoTuning		Auto	automatisch
	בחטרב		NAn		Manueller Start des Tunings

28	ATR121	Wahl der	dSE	dSEE	2 Schaltpunkte (default)
	Fnc	Betriebsart Und der Visualisierung			1 Schaltpunkt
	ATR141		u ¦S	u S	Nur Anzeiger (keine Regelung)
		FbN	F.L.N	Funktion "Neutrale zone/Dead band"	
			NA I	CA r	Istwert und Schaltpunkt nicht visualisieren
			ldo	ldoll,	Domotics 1 : Anzeige und LEDs 15Sek nach letzten Betätigung der Tasten
					ausschalten
			2.do	2.doN	Domotics 2 : Anzeige 15Sek nach letzten Betätigung der Tasten
					ausschalten

			3.00	<u>Job</u>	Domotics 3 : Anzeige 15Sek nach letzten Betätigung der Tasten ausschalten, ausser Dezimalpunkt
			5.5.	<u>55</u>	1 Schaltpunkt: Schaltpunkt stetig visualisiert, Istwert (blinkend) nur mit Betätigung der Taste
29	ATR121	Auswahl der Gradanzeige			Celsius (default) Fahrenheit
	ATR121				300 bit/s
30	bdr	Baud rate der seriellen			9600 bit/s
	ATR141	Kommunikation		Пара	19200 bit/s (default)
				Паря	38400 bit/s
31	ATR121 ATR141 ATR141	Slave-Addresse	1-	254	(default 254)
32	ATR121	Verzögerung der seriellen Kommunikation	0-	100	Millisekunden (default 20)
33	ATR121	Wahl der Kühlflüssigkeit	R ir	- Luft	TC2 =10Sek P.B.M = 1.00. (default)
	ATR141	(Funktion Heizen/Kühlen) :	o il	– ŐI	TC2 = 4s P.B.M = 1.25.
	Siehe Fussnote 1	Werte für	H2o	Wasser	TC2 =2s P.B.M = 2.50.

	PhN	Vervielfacher		Proportionalbereich
34		Proportionalberei	1.00 5.00	fur Kuhlen durch
	Sicho	ch für Kühlen		Multiplizierung der
	Fusshote 1			Parameter
				(Parameter 15) für
				Wert dieses
				Parameters
				(default 1.00)
	ATR121	Optionen Tote		Negative Werte= Tote
35		Zone mit Heizen/	-2050 %	Zone, positive Werte=
		Kühlen PID-		Überschneidung
		Regelung	Vom 🗔 Wert	(default 0)
	oudb.	rtegelang		(deldal 0)
	Siehe			
	Fussnote 1			
		Zykluszeit des		Sekunden
36	Siehe	Kühlen-	1300	(default 10)
	Fussnote 1	Ausgangs		

37		Filter auf Istwertan-zeige		Filter aus (default)		
57				Filter "erste Ordnung"		
			5	(Zeit Konst. 1Sek)		
		kann Refresh der	5 2	Mittel auf 2		
		Anzeige	j	Stichproben		
		verlangsamen, damit Lesung	ר	Mittel auf 3		
				Stichproben		
		erleichtert wird.	ΓЧ	Mittel auf 4		
				Stichproben		
			55	Mittel auf 5		
					Stichproben	
				5	55	Mittel auf 6
				Stichproben		
				Mittel auf 7		
				Stichproben		
			L L	Mittel auf 8		
				Stichproben		
			ΓQ	Mittel auf 9		
				Stichproben		

		Mittel auf 10
		Stichproben

14 - TUNING

Tuning erlaubt das Setzen optimaler PID Parameter, um optimale Ergebnisse zu erzielen:

- Stabilität, linare, schwankungsfreie Kontrolle der Temperatur um den Schaltpunkt

- schnelle Reaktion auf Schaltpunkt-Abweichungen durch externe Störungen

Tuning beinhaltet das Setzen und Kalkulieren folgender Parameter:

- Proportionales Band (Trägheit der Anlage, für Temperaturen in °C ausgedrückt)
- Integrale Zeit (bestimmt die Zeit, die der Regler braucht um stationäre Fehlersignale

zu entfernen, Trägheit der Anlage als

Zeitwert ausgedrückt

• Abgeleitete Zeit (Reaktionszeit des

Reglers bei Änderung der gemessenen

Größe normalerweise ¼ der integralen

Zeit)

Der Schaltpunktwert kann nicht während des Autotunings verändert werden!

15 - MANUALLER START DES TUNINGS

Wählen Sie den Parameter	und setzen Sie ihn auf	(manueller
Start)		

	Taste	Display	Ausführen
1	FNIC	Anzeige visualisiert	
2		Anzeige visualisiert	
3	oder 4 Sek. warten	Anzeige zeigt Istwert und wechselnd, bis der Vorgang abgeschlossen ist (dies kann einige Minuten dauern).	Um den Vorgang zu unterbrechen, die Taste drucken und drucken, bis unterbrechen, die Taste

16 - AUTOTUNING

Wählen Sie den Parameter wurd und setzen Sie ihn auf wurd. Autotuning geändert wird. Die Anzeige wechselt zwischen dem ktuellen Prozesswert und
bis der Vorgang abgeschlossen ist (dies kann einige Minuten dauern).
Um den Vorgang zu unterbrechen drücken Sie 🤎 und 💟 um 🗔 🗐
17 - FUNKTION LATCH ON
Für Anwendungen mit linearen Potentiometern (Potentiometer ≤ 6 K und ≤ 150 K) oder 010Volt - 0/420mA Eingängen, kann die Untergrenze der Skala (siehe
Parameter LD) auf den minimalen Betriebswert des Sensors gesetzt
werden; Es ist auch möglich die Obergrenze der Skala (Parameter 🕅 👢 🔍) auf den maximalen Betriebswert zu setzen, dies kann direkt vor Ort durchgeführt werden.
Die Option "virtueller Nullpunkt" (wählen Sie) oder) ermöglicht es den Punkt festzusetzen, an dem der Regler den Nullpunkt erkennt. (aber
immernoch im Skalenbereich zwischen La II und II II).
Wenn Sie wählen, "virtueller Nullpunkt" muss nach jedem Start des
Reglers neu programmiert werden. Wählen Sie wird, "virtueller Nullpunkt" wird nach der ersten Kalibrierung gespeichert.
Um die Funktion LATCH ON zu aktivieren , wählen Sie den Parameter

Zur Kalibrierung befolgen Sie bitte die Anweisungen in folgender Tabelle

	Taste	Anzeige	Ausführung
		Verlassen des	Setzen Sie den Sensor auf
1	ENC	Konfigurationsmodus Display	den minimalen Betriebswert
		zeigt wechselnd den	(entspricht
		Prozesswert und LAL.	La n ₎
		Speichert den minimalen	Setzen Sie den Sensor auf
2		Wert.	den maximalen Betriebswert
		Display zeigt	(entspricht H , n)

3		Speichert den maximalen Wert. Display zeigt	Um den Prozessverlauf zu Verlassen, drücken Sie . Um den "virtuellen Nullpunkt" einzugeben, setzen Sie den Sensor auf den Nullpunkt.
4	SET	Speichert den "virtuellen Nullpunkt" Display zeigt ** Wenn Sie Maben, wiederholen Sie die Kallibrierung bei Neustart des Reglers ab Punkt 4	Um die Funktion zu unterbrechen, drücken Sie

18 - FUNKTION NEUTRALE ZONE

Die Funktion "Neutral Zone (sie wird aktiviert durch wählen von bei Parameter 28 () ermöglicht das Setzen einer neutralen Zone, wie es in der Grafik beschrieben ist. Im Heizen- Modus (Parameter gewählt als (), ist der maximale Betriebswert für das Steuer Relais der Wert aus SET1 minus SET2 und der maximale Betriebswert für das Alarm Relais ist SET1 plus SET2 (Die Hysterese wird immer über den Parameter gesetzt). In diesem Bereich sind beide Relais ausgeschaltet. Ein Relais wirkt oberhalb diesem Bereich, das andere Relais wirkt unterhalb. Im Kühlen-Modus (Parameter) gewählt als () sind die maximalen Betriebswerte der beiden Relais umgedreht.

Standard Alarme (Band, Abweichung ...) sind in dieser Betriebsart nicht möglich.

19 - SERIELLE KOMMUNIKATION

Die serielle Kommunikation RS485 und das Protokoll MODBUS – RTU ermöglichen dem Regler Daten zu empfangen und auszutauschen, sowie die Verbindung mehrerer Geräte an ein zentrales Supervisor System. Die Einheit kann nur als Slave-Einheit konfiguriert werden. LT Widerstände an der RS485- Leitung müssen entfernt werden, um Störungen zu vermeiden. Der Regler wird nur auf eine Anfragen Antworten, wenn diese die selbe Adresse enthält wie der Parameter Holl. Die Spanne der möglichen Adressen beträgt 1-254. Die Adresse 255 wird zu Kommunikation mit allen verbundenen Einheiten genutzt. Einzelne Einheiten ATR121/141 in der gleichen Verbindung können nicht die selbe Adresse besitzen. Wenn Sie die 0 wählen, bekommen alle angeschlossenen Einheiten eine Anfrage, aber es wird keine Antwort benötigt. Die Antwort der Regler ATR 121/141 kann verzögert sein. Diese Verzögerung (in Millisekunden) wird über den Parameter eingegeben. Nach jeder Parameteränderung speichert der Regler den neuen Wert im EEPROM memory (100000writing). Veränderte Schaltpunkt-Werte werden im EEPROM Memory mit 10 Sekunden Verzögerung gespeichert. **Nicht angegebene Words sollten lieber nicht benutzt werden, um Störungen zu vermeiden. Baud-rate Durch Parameter veränderbar MD.2 = 9600 bit/s

	MD.3 = 19200bit/s	
	MD.4 = 38400bit/s	
Format	8, N, 1 (8bit, no parity, 1 stop)	
Unterstüzte	WORD READING (max 20 word)	(0x03, 0x04)

Funktionen	SINGLE WORD WRITING	(0x06)
	MULTIPLE WORDS WRITING	(0x10)

MODBUS ADDRESS	Beschreibung	READ/ WRITE	RESET VALUE
0	Gerät	R	101/102
1	Software Version	R	?
2	Belegt	R	?
3	Belegt	R	?
4	Belegt	R	0
5	Slave Address	R	EEPR
6	Belegt	R	?
500	Ladung Werkeinstellungen (Schreiben 9999)	R/W	0
1000	Istwert	R	0
1001	Kaltstellenkompensationswert	R	0
1002	Schaltpunkt 1	R/W	EEPR
1003	Schaltpunkt 2	R/W	EEPR
1004	Heizen Ausgang % (0-10000)	R	0
1005	Kühlen Ausgang % (0-10000)	R	0
1006	Relais Zustand (0=off, 1=on)	R/W	0
	Bit $0 = \text{Relais Q1}$		
	Dit I = ReidisQ2 $Dit 2 = SSD$		
1007	Manueller Entringgelung des Alarms		0
1007	1 schreiben um alle Alarme zurückzustellen		0
1008	Febler-Flags	R	0
1000	Rit0 - Febrom Schreiben error	IX .	0
	Bit1 = Eeprom Lesen error		
	Bit2 = Kaltschweissen error		
	Bit3 = Istwert Fehler (Sensor)		
	Bit4 = Allgemeiner Fehler		
	Bit5 = Eichungsdaten/Kalibrierung Fehler		
1009	Start/Stop	R/W	0
	0=Regler in STOP		
	1=Regler in START		
1010	OFF LINE ¹ Zeit (millisekunde)	R/W	0
2001	Parameter 1 C.D.J. C.D.J.		EEPR
2002	Parameter 2 SEn SEn	R/W	EEPR
2003	Parameter 3	R/W	EEPR

¹ Fall Wert 0 ist, der Regler is abgeschaltet. Falls anders als 0, , it das ist die max. Zeit zwischen 2 Pollings bevor der Regler off-line wird.

Wenn der Regler off-line geht, geht er zum Stop, der Steuerausgang ist auch ausgeschaltet aber die Alarmen sind aktiv.

2004	Parameter 4 Las La. S.	R/W	EEPR
2005	Parameter 5 H S H S	R/W	EEPR
2006	Parameter 6 Lon Lo. n.	R/W	EEPR
2007	Parameter 7 H In H I n	R/W	EEPR
2008	Parameter 8	R/W	EEPR
2009	Parameter 9 CRO CALO.	R/W	EEPR
2010	Parameter 10 CRG CRLG	R/W	EEPR
2011	Parameter 11	R/W	EEPR
2012	Parameter 12 SEE SEE	R/W	EEPR
2013	Parameter 13 Ld I LEd I	R/W	EEPR
2014		R/W	EEPR
2015	Parameter 15	R/W	EEPR
2016	Parameter 16	R/W	EEPR
2017	Parameter 17 E.d. E.d.	R/W	EEPR
2018	Parameter 18 E.C.	R/W	EEPR
2019	Parameter 19 AL.	R/W	EEPR
2020	Parameter 20 CFA CF. A.	R/W	EEPR
2021	Parameter 21 Sc.A. Sc.A.	R/W	EEPR
2022	Parameter 22	R/W	EEPR
2023	Parameter 23 HUA HUSA	R/W	EEPR
2024	Parameter 24	R/W	EEPR
2025	Parameter 25 PSE. PSE.	R/W	EEPR
2026	Parameter 26 FIL FILE.	R/W	EEPR
2027	Parameter 27 Lun LunE	R/W	EEPR
2028	Parameter 28 Fnc Func.	R/W	EEPR

2029	Parameter 29 GrA GrAd	R/W	EEPR
2030	Parameter 30 bdr bdr E.	R/W	EEPR
2031	Parameter 31 Add Addr.	R/W	EEPR
2032	Parameter 32 dES dL.Sr.	R/W	EEPR
2033	Parameter 33	R/W	EEPR
2034	Parameter 34	R/W	EEPR
2035	Parameter 35 Oud oudb.	R/W	EEPR
2036	Parameter 36 E.C. 2	R/W	EEPR
2037	Parameter 37 FLJ FLLJ	R/W	EEPR

20 - MEMORY CARD (WAHLWEISE)

Parameter und Schaltpunkte können mit der MEMORY CARD schnell kopiert werden. Stecken Sie die MEMORY CARD bei ausgeschaltetem Regler ein und achten Sie darauf, das sie richtig eingesteckt wird. (elektronische Bauteilen müssen Richtung Tastatur sein).

Nach dem Einschalten des Reglers wird angezeigt 1000^{2} .

	Press	Display	Do
1		zeigt ILd, zeigt Inc.	Wählen Sie (Memo load) wenn Sie die auf der Memory Card gespeicherten Parameter in den Regler laden wollen. Wählen Sie (, dann bleiben die Parameter des Reglers unverändert
2	FNC	Der Regler speichert die Werte und startet neu.	

Aktualisierung der Memory Card

Wenn Sie die Werte der Memory Card aktualisieren wollen, führen Sie die oben beschriebene Prozedur aus und wählen

² Nur wenn die auf der Memory gespeicherten Parameter korrekt sind.

³ Wenn der Regler beim Einschalten ¹ Incht visualisiert, **Sind keine** Werte auf Memory Card gespeichert, aber Werte können kopiert und aktualisiert werden.

20.1 Memory C.243 mit Batterie (wahlweise)

Der Regler braucht keine Versorgung.

Diese Memory Card ist mit internen Batterie ausgestattet und Autonomie ist ca. 1000 Gebrauchen.

Karte einstecken und Programmierungstaste drücken. Solange die Parameter überschrieben warden ist der LED rot. Sobald die Programmierung beendet ist, wird der LED grün.

Der Vorgang kann mehrmals wiederholt warden.

21 - SPEICHERUNG WERKEINSTELLUNGEN

Dieser Vorgang erlaubt, die Werkeinstellungen zurückzugewinnen.

	Drücken	Wirkung	
1	رمیر Ca. 3 Sekunden.	Nach 5 Sek, zeigt der Display und die erste Chiffre links blinkt. beim ATR141	
2	oder	Die blinkende Chiffre mit Pfeiltaste ändern und mit Taste zur nächsten Chiffre gehen.	Password eingeben: 999 beim ATR121 9999 beim ATR141
3	Zur Bestätigung	Der Regler lädt/speichert die Werkeinstellungen	

22 - ÜBERWACHUNGSSYSTEM MIT ATR121 / 141

Auf der untenstehenden Übersicht finden sie die Hauptbestandteile des Systems Sensor : PT100

According to EIA RS-485. Suggested cable: Belden 9841.

AN-0020-3704

23 - KONFIGURATION

Datum: Installierung: Bemerkungen:

Model ATR121/141: Anlage:

Par.	Description	Default	Prom.
cout	Auswahl des Steuerausgangs	o lo2.	
SEr	Sensor Typ	Lc. H	
dP.	Auswahl der Dezimalstellen		
La S.	Untergrenze des Schaltpunktes		
Η, <u>5</u>	Obergrenze des Schaltpunktes ATR121	999	
	ATR141	1750	
Lan	Untergrenze nur für V/mA		
Ηιη	Obergrenze nur für V/mA	999	
LAFC	Latch-On Funktion	oFF	
cAL.o.	Offset-Kalibrierung		
cAL.C.	Gewinn-Kalibrierung		
	Art der Regelung	HEAF	
Scc.	Kontakt des Steuerausgangs bei Störungen		
LEd I	Gewählter Zustand des OUT1		
HYSc	Hysterese/ deadband		
P <u>b</u> .	Proportionalbereich		
۲	Integralzeit		
L.d.	Abgeleitete Zeit		
L.c.	Zeit des Zykluses		
AL.	Art des Alarms	ALA	
cr. A	Kontaktarlarm OUT	na,5.	
S.c.A.	Art des Kontaktes für den Alarmausgang bei Fehlern	C.O.	
LE95	Zustand des LEDs	C.C.	

HYSA	Alarm Hysterese		
del A	Alarmverzögerung		
P.SE.	Absicherung der Schaltpunktes	Free	
Fılt.	Software Filter		
Fnue	Art des Autotuning	oFF	
Func,	Betriebsmodus	d:SEF	
G-Ad	Anzeigen-Auswahl		
bdrt.	Baud rate		
Addr.	Slave-Addresse	254	
dL.Sr.	Serielle Verzögerung	20	
coof.	Wahl der Kühlflüssigkeit		
РЬЛ	Vervielfacher Proportionalbereich für Kühlen		
oudb.	Überschneidung / dead band		
L.c. 2	Zykluszeit 2		
FLL	Filter Visualisierung (Refresh Display)	oFF	

24 - ANMERKUNGEN

PIXSYS

Via Tagliamento, 18 30030 Mellaredo di Pianiga (VE) www.pixsys.net e-mail: sales@pixsys.net - support@pixsys.net

2300.10.058-RevD 031208

*2300.10.058-D